Western Region
Update

Nik Wiman, Peter Shearer*, Vaughn Walton, Jana Lee, Silvia Rondon, Jeffrey Miller, Chris Hedstrom, Richard Hilton, Shannon Davis, Preston Brown

Jay Brunner, Todd Murray
Background

- 2004: BMSB identified from Portland by ODA
- 2004-2011: Urban nuisance problems increasing
- 2012: First finds of BMSB in commercial agriculture
- 2012: OSU survey finds BMSB are widely distributed
- 2013: More finds in commercial agriculture
Current PNW distribution

- OSU/WSU/WSDA data
- Major range expansion
- Major new established populations found in 2012
 - Hood River, Southern Willamette valley counties
- Several new detections in 2012
 - Yakima, Jackson, Wasco
- Focus for 2013: The Dalles, Southern OR
- WA will be focused on Yakima

CA=?
BMSB in OREGON

BMSB is becoming more agricultural

- Hazelnut
- Tree Fruit
- Vineyard
- Caneberry
- Nurseries
- Blueberry
- Suspected damage but unverified
- Infestation stigma
- Potential for severe problems
 - Habitat, human population, and mild environment
Early DD Accumulation in OR

- Western and Southern Oregon is very temperate
- Anecdotal reports: Sunning bugs all winter
- We were very mild, then early spring
 - How could this affect sexual development?
 - Air temperature vs. structural surface predictions

![Graph showing BMSB DD C since Jan 1 for Hood River, OR, Corvallis, OR, Ashland, OR, Vancouver, WA, Aurora, OR, and Winchester, VA (30 y).]

$T_L = 12^\circ C, T_H = 33^\circ C$

Single sine IPPC
Early DD Accumulation in OR

By late May, Winchester catches up or surpasses OR.
Host use patterns – Frequency

- More maples, Lilac, etc.
- Approx. 90 discrete, infested holly

Number of infested host plants

Genus:
- ilex
- acer
- unk
- prunus
- fraxinus
- syringa
- ailanthus
- pyrus
- ulmus
- populus
- betula
- cornus
- paulownia
- rubus
- tilea
- cedrus
- corylus
- juglans
- mahonia
- rosa
Important host plants in OR

• High density food source allows massive aggregations of BMSB (proteinaceous)

• **2013**: examining volatiles from holly berries and other hosts as potential attractants

• Funded Cherry Technology Grant, PI Jay Brunner, WSU

• How important are food odors?

• Other monitoring tools

Ilex aquifolium
English holly
ornamental/crop/weedy

First BMSB col. 4/17/13
Important host plants in OR

Acer platanoides
Norway maple cultivar
Important host plants in OR

Cornus sericia
Red osier dogwood
widespread native/ornamental
Important host plants in OR

Himalayan blackberry
Rubus armeniacus
extremely widespread invasive
Important crop plants in OR
Phenology & Voltinism: Cages

- Briefly: follow life history events in a controlled outdoor environment
 - Stage-specific phenology
 - Voltinism: how many generations??
 - Currently: thought to be 1 in OR
- 7 cages in 5 locations (6x6x6)
- Brent’s protocol except free ranging not allowed
- Supplemental food provided in sleeve cages if necessary
- Established 4/15-4/19
Sleeve cages in Hood River
Daylight: Date of 14h of light
Phenology & Voltinism: Cages

- Vancouver, WA
- Hood River
- Aurora
- Corvallis (home base)
- Ashland

[Map showing locations in Oregon and Washington, USA.]
Daylight: Date of 14h of light

Phenology & Voltinism: Cages

First Eggs (first in US?) Hood River 5/20

177 DD Corvallis, OR (2 cages)

170 DD Hood River, OR (not the most northern site)

Cold & rainy!

$T_L=12C$, $T_H=33C$

single sine IPPC
Phenology & Voltinism: Cages

1st eggs: Observed vs. Predicted for Ashland, OR (SO)

- Northernmost and southernmost 1 day apart
- Problem: source of BMSB was Willamette
Phenology & Voltinism: Rearing

METHODS:
• BMSB collected from Willamette Valley 2-3 times per week (beats)
• Placed into individual 74ml cups along with food, water
• Growth Room (16:8 L:D, 26° C)
• Follow life history

GOALS:
• Translate: calendar time to DD to predict life history events in the field
 • Every day lived in a growth chamber at 26 C = 13.8 DD
 • Lab life table data on DD scale = predictive model for field?
 • Nonconventional DD model testing
 • More informative than development alone, reproductive periods, voltinsim?
Classifying Generations

• Adults becoming sparse 8/3-8/20
• Increasing 5th
• Increasing cadavers
• First new adult 8/21
 • Melanization & hardness
• Long lived adults

• Difference in overwintered and summer adults reflects missing diapause period

• Adult life for overwintered is already about half over at collection in spring
Calendar Day Fecundity

Summary statistics

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΣM_x (gross fecundity)</td>
<td>129</td>
</tr>
<tr>
<td>ΣL_xM_x (net fecundity)</td>
<td>70</td>
</tr>
<tr>
<td>$\Sigma L_xM_xh_x$ (net fertility)</td>
<td>56</td>
</tr>
</tbody>
</table>

- Most reproduction occurred soon after collection
- Calendar day basis doesn’t really make sense (bugs are different ages at collection)
- However, summary stats are stable
Fecundity Regression

- The time of collection had an effect on the fecundity of females (age effect)
- Fecundity of summer females was low and uniform
- Were summer females unfertilized?

\[F_{1,440} = 190, \ P < 0.01 \]
Fertility Regression

- The time of collection affected fertility of females (age effect)
- Very little fertility in fems classified as summer gen
 - Misclassified?
 - Small partial second generation?

\[F_{1,440}=286, \, P < 0.001 \]
The fertile proportion of cohorts increased initially, then averaged around 80%.

Misclassification may have occurred during the brief period of generational overlap of adults.
Degree Day Scale Survival

- Predicts survival up to and past the first summer adults (893 DD)
- Last 5% or so suspect because of possible misclassification
Degree Day Scale Fecundity

Summary statistics

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sum M_x$ (gross fecundity)</td>
<td>129</td>
</tr>
<tr>
<td>$\sum L_xM_x$ (net fecundity)</td>
<td>70</td>
</tr>
<tr>
<td>$\sum L_xM_xh_x$ (net fertility)</td>
<td>56</td>
</tr>
</tbody>
</table>

- Predicts reproduction up to and past the first summer adults (893 DD)

04/09/13 PBESA, Tahoe
Predicted vs. Observed

- Field egg collections
- Searches 2-3 times per week
- 2 crews
 - Willamette
 - Hood River
Predicted vs. Observed: 2012

- First egg mass found near the start of the predicted reproductive period
- The IPPC model predicted eggs a little late (314 vs. 225 DD)
- The last fertile egg mass was found at the very end of the reproductive period
- Egg masses were (rarely) found into October, but were infertile

(IPP/NIelsen)
Conclusions

✓ Methodology appears to have predictive potential: reproductive periods agreed with observed, better than development model
 ✓ Potentially more informative model than that based solely on development thresholds
 ✓ Beginning, peak, and end of reproduction
 ✓ Management potential
✓ Model predicts survival and reproduction of overwintered females for most of the season
 • Stranded nymphs can result from long OW generation
 • Does not require an additional generation
✓ Almost no females classified as summer generation were fertile
 • If there was a second generation in 2012, it is very small and partial
Electronic SB feeding monitor

Cool, but clunky!
Electronic SB feeding monitor
Electronic SB feeding monitor
Electronic SB feeding monitor

Set it and forget it

- USB data acquisition with Lab View
- Timer set to X length of time (48 h)
- Will log 1 point per sec
- LEDs and waveform graphs
Electronic SB feeding monitor
Electronic SB feeding monitor
Electronic SB feeding monitor

• Current objectives:
 • Determine feeding patterns of M,F, and nymphs
 • Determine seasonal patterns
 • Examine how environment shapes feeding behavior

• Possible future uses of this technology:
 • Insecticide bioassays
 • Feeding stimulants
 • Feeding deterrents

• Adapt probes to accept different food items
• Adapt to other insects (honeybees)
Biological control
Crabronid wasps

Astata sp. possibly *bicolor* (Crabronidae)
Sentinel Egg Masses

- Objective: determine parasitoid diversity and rank
 - Different crops, natural areas (ornamental and wild plants)
- Problem for us in Oregon: Grower will not allow fresh viable egg masses in the field
- Solution: freeze the EM making them sterile
 - Well-tested technique for *Nezara* parasitoids
 - Frozen EM (-80C) are acceptable to parasitoids
 - Frozen EM can be banked
 - Frozen EM may in fact be more acceptable than fresh
 - Two *Trissolcus* spp. in colony reared better on frozen vs. fresh EM
 - Suggests biological defense prevents successful parasitism by native parasitoids
Frozen egg masses – lab Testing

- **Fresh** BMSB eggs are only acceptable to *T. halyomorphae* for ~24 hrs
- **Frozen** egg masses are parasitized at a high rate out to 6 d, when kept cool
- **Incubated frozen** egg masses degrade faster but still are still attacked
Frozen egg masses – lab Testing

- Emergence from **Frozen** egg masses is high out to 6d, when kept cool
- Poor emergence out to 3d when eggs are heated
- This is good, we drive a lot to get to field sites
Frozen egg masses – lab Testing

- Sex ratios may remain female biased for ~ 3d when eggs kept cool
 - Low emergence after day 5 is messing up data, more reps needed
- Emergence out to 3d was female biased at warm incubation temperatures
Parasitism of sentinel EM

- OSU: blackberry, hazelnut, blueberry, holly
- Left for a week
- PSU: apple
- VT: ailanthus
- UDEL: sweet corn
Parasitism of Wild EM

- Comparing E. and W. Coast
- Ornamentalss
 - OR: holly, paulownia, catalpa, maple, ailanthus
 - UMD: Maples, Cherry, elm
- UMD: Field corn

![Graph showing percentage of wild BMSB eggs with categories: Parasitism, Hatched, Undeveloped, and Predation. The percentages are 10%, 78%, 3.75%, and 4.06% respectively.]
Predation issues on sentinels

- Pesky predators
 - Predation data for wild masses is important
 - Predation of sentinels is annoying and expensive
 - Really trying to examine parasitoid species
 - Predation data on sentinel masses not informative
- Human placement bias
 - Temporal bias for frozen masses (1 week)

Wiped out again!
Predator cages for sentinel EM

- **Goal**: exclude ants and other mandibulate predators
- **Plan**: test on 50% of 2013 sentinels
Oregon parasitoid diversity

Trissolcus cosmopeplae
- Not reared from BMSB eggs in Mid-Atlantic
- The genus cosmopepla contains some of the smallest pentatomids
- More research needed on host records, may hit bigger SB eggs too

Trissolcus euschisti
Wild and sentinel egg dissections

Trissolcus early development
Wild and sentinel egg dissections
Wild and sentinel egg dissections

Trissolcus late development
Wild and sentinel egg dissections

Anastatus spp. ONLY ONE!!
Kairomones and parasitoids

- We performed a kairomone trial in 2012 at 3 sites in OR
 - With Dave Biddinger, Penn State
- 3 treatments: UTC, *Euschistus conspersus* pheromone and USDA-ARS #10 x 3 reps/site
- Cards were collected and rotated weekly
- Potential *Trissolcus* were lifted, washed, and pickled
 - Lots of scope work ahead!
 - Will be repeated 2013
 - Maybe clear or white cards
 - Fewer nontargets
Temp-dependent parasitism

- How efficiently do BMSB egg parasitoids compete at different temperatures?
- Funded by Oregon Ag Research Foundation (ARF)

Temperature gradient table
2012 Hazelnut feeding damage trials

- USDA Hazelnut Germplasm Repository, Corvallis, OR
- 9 trees representing three cultivars
- 25 bags placed in each tree in May (225 bags total)
- Insect exposure from June to October 2012 – 16 weeks total
- Three adult males or late instar nymph per bag, exposed for one week
- Nuts examined for damage after harvest

Chris Hedstrom & Vaughn Walton
Healthy

Blanks
Oily

Shriveled

Corking

Oily
2012 Hazelnut feeding damage results

Asterisks indicate significant difference of mean % damage type when compared to the control group (Kruskal-Wallis non-parametric ANOVA)
2012 Hazelnut feeding damage results

The graph illustrates the percentage of damaged kernels over several feeding periods. The x-axis represents the feeding period, starting from June 6 to September 19, with specific dates highlighted. The y-axis shows the damaged kernels (mean %) with categories for Pre-kernel expansion, Kernel expansion, and Complete kernel expansion to maturity.

Key observations:
- Pre-kernel expansion: Minimal damage observed.
- Kernel expansion: Damage increases significantly during mid-July to early August.
- Complete kernel expansion to maturity: Highest damage recorded, particularly in late August and early September.

Note: The graph includes asterisks to indicate significant differences in damage percentages between the feeding periods.
All stages of hazelnuts tested appear to be susceptible to feeding damage

Damage appears to be very similar to that of other tree nuts by other members of Pentatomidae

Trends observed suggest that early season feeding can result in blank nuts and late season feeding can result in corking and necrosis

Trial being repeated in 2013
Controlled damage: Blueberries

- Coordinated with Joyce Parker (Rutgers)
- Sleeve cage trials
- Early and late variety
- 0, 2, 5, 10 BMSB per cluster x 10 reps
- Week-long exposures
Controlled damage: Blueberries
Controlled damage: Blackberry
BMSB taint in wine

• New OSU faculty with wine sensory analysis and flavor chemistry expertise

• **Research question**: will BMSB contamination result in wine taint?
 • Side note: BMSB found on harvested grapes last year
 • Taint likely depends on process
 • High-quality Pinot Noir grapes (generously donated by Adelsheim Vineyard)
BMSB taint in wine

• **Step 1**: Characterize BMSB defensive compounds
• GCMS chromatogram of the volatile aroma compounds from “stressed” BMSB
BMSB taint in wine

Is the winemaking process a “stressful” enough experience that stinkbugs can impact wine quality?

- Stinkbugs added to Pinot noir grapes before wine processing

- BMSB added to the destemmer
 - Control – no bugs
 - Treatment 1 (T1) – 1 bug per 4 clusters
 - Treatment 2 (T2) – 1 bug per 2 clusters

- Moribund bugs present throughout ferment

- Additional taint compounds released at pressing to remove grape skins

- Main contaminant in wine was trans-2-decenel
Evaluating BMSB taint in wine

- Difference testing (triangle tests)
- Consumers discriminated treatment wines from controls ($\alpha = 0.05$)

- Consumer rejection threshold very close to detection threshold
- Low amounts of BMSB taint have a negative impact on Pinot noir quality.
Acknowledgements

• Christine Dieckhoff, Kathy Tatman, Tracy Leskey, David Biddinger, Preston Brown, Erika Maslen, Todd Murray, Vince Jones, Jay Brunner, Chris Hedstrom, Betsey Miller, Sam Tochen, Pallavi Mohekar, Zoe Milburn, Bryan Smith