The Impact of Specific Management Programs on BMSB Injury in Commercial Orchards

Starker Wright and Tracy Leskey
USDA-ARS, Appalachian Fruit Research Station

Bryan Butler
University of Maryland Extension
Acknowledgments

USDA-ARS-AFRS Technical Staff
John Cullum
Torri Hancock
Rebecca Posa
Brent Short
Cameron Scorza
Sean Wiles

Participating Commercial Growers
George Behling
Ron Slonaker
Brian Jacques
Bob Black
Guy Moore
Mark Orr
Bill Gardenhour
Henry Allenberg
Dwight Baugher
Nathan Milburn
- Baited Perimeter Traps
- Sweep Netting
- Limb Jarring
- Visual Inspection
- Grower Observations
- Fruit Injury Sampling
Fruit Injury Inspection

• Non-Destructive (On-Tree) Sampling
 – Peripheral Zone and Interior Zone
 • Shuck Split Through 20mm Fruit

• Destructive (Lab Dissection) Sampling
 – Peripheral Zone
 • 20mm Fruit Through 40mm Fruit

 – Peripheral Zone and Interior Zone
 • 40mm Fruit Through Harvest
Fruit Injury Inspection

• Destructive (Lab Dissection) Sampling
 – Whole-Fruit Sampling
 – Presence of Feeding Injury Only
 – Qualitative Assessment of Severity, Quantitative Assessment of Severity Conducted Closer to Harvest
Key Question

• How do grower management decisions influence presence and severity of BMSB feeding injury?
 – Material Selection
 – Rate Selection
 – Coverage and Concentration (GPA)
 – Application Method (ARM)
 – Treatment Interval
 – Strategic Deployment (Peripheral Zone vs. Whole Plot)
 – Tank Mixes, Commercial Blends, and Synergists
Key Question

• How do grower management decisions influence presence and severity of BMSB feeding injury?
 – Material Selection

 – Treatment Interval
Key Question

• How do grower management decisions influence presence and severity of BMSB feeding injury?
 – Material Selection
 – Treatment Interval

• If the input equals the spray schedule, and the outcome equals the injury rate, can a commercial grower win by spraying?
Monitored Orchard WV2-O
Non-Destructive/Destructive Fruit Sampling (Peach)
Presence of Feeding Injury

Fruit Size (Diameter)

% Fruit Injury

Sample Date

4-­‐May
11-­‐May
18-­‐May
25-­‐May
1-­‐Jun
8-­‐Jun
15-­‐Jun

Peripheral Zone
Interior Zone
Historical Economic Injury Level
Monitored Orchard MD1-G
Non-Destructive/Destructive Fruit Sampling (Peach)
Presence of Feeding Injury

Fruit Size (Diameter)

<table>
<thead>
<tr>
<th>Sample Date</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-May</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-May</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-May</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-May</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Jun</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-Jun</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-Jun</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Peripheral Zone
Interior Zone
Historical Economic Injury Level
Monitored Orchard MD6-L
Non-Destructive/Destructive Fruit Sampling (Peach)
Presence of Feeding Injury

Fruit Size (Diameter)

Sample Date

% Fruit Injury

Peripheral Zone

Interior Zone

Historical Economic Injury Level
Monitored Orchard MD3-A
Non-Destructive/Destructive Fruit Sampling (Peach)
Presence of Feeding Injury

Fruit Size (Diameter):
- 12 mm
- 20 mm
- 30 mm
- 35 mm
- 40 mm
- 45 mm

<table>
<thead>
<tr>
<th>Sample Date</th>
<th>Peripheral Zone</th>
<th>Interior Zone</th>
<th>Historical Economic Injury Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-May</td>
<td></td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>11-May</td>
<td></td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>18-May</td>
<td></td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>25-May</td>
<td></td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>1-Jun</td>
<td></td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>8-Jun</td>
<td></td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>15-Jun</td>
<td></td>
<td></td>
<td>0%</td>
</tr>
</tbody>
</table>

Leverage 360 (ARM):

Thionex Lamcap (ARM):

Orthene Fencerows Edges:

Historical Economic Injury Level:
- 0%

Legend:
- Red: Peripheral Zone
- Green: Interior Zone
- Yellow: Historical Economic Injury Level
Challenges Emerging

• Large Farms
 – If it already takes 7 days to cover the farm, then options are severely limited.

• Diversified Farms
 – Essentially all PYO and farm-market crops are at risk.

• Residual Effectiveness
 – Few materials demonstrating greater than 5 days of kill of immigrating bugs.

• Label Restrictions
 – Seasonal maximum applications/seasonal maximum amounts will come into play very quickly for materials that prove effective.
Mid-Season Conclusions

- As of June 18th across all sampled farms, the injury rate in peaches is 16.7% in the peripheral zone and 10.3% in the plot interior. However, peripheral-zone injury is generally more severe.

- After peaches reach ~3/4”, there appears to be very little room for error in material selection, rate, or timing of treatments. However, growers are still functioning without triggers or reasonable assurance of success.

- A combination of tight-interval residual material (endosulfan) tank-mixed with a knockdown material (pyrethroid) augmented by edge treatment with a systemic (acephate) has held firm through June 15th in an orchard with a history of very high BMSB damage rates.

- Central Maryland appears to be facing a substantial increase in the overall BMSB population from the 2010 growing season to the 2011 growing season.

- Early-season BMSB management in peaches is going to take practice.
In-Season Research Projects

• Analysis of Residual Insecticide Effects
• Trap and Stimulus Improvements
• Olfactory Deterrents
• Insecticide Synergists
• Tactile Deterrents
Surround Coverage (First Application)
15 LBS/100 Gallons, 125 GPA